Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

نویسندگان

  • Stephen L Belmonte
  • Rashmi Ram
  • Deanne M Mickelsen
  • Frank B Gertler
  • Burns C Blaxall
چکیده

Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy.

Vasodilator-stimulated phosphoprotein (VASP) and mammalian enabled (Mena) are actin cytoskeleton and signaling modulators. Ena-VASP proteins share an identical domain organization with an NH2-terminal Ena VASP homology (EVH1) domain, which mediates the binding of these proteins to FPPPP-motif containing partners such as zyxin and vinculin. VASP and Mena are abundantly expressed in the heart. Ho...

متن کامل

Overexpression of pyruvate dehydrogenase kinase 4 in heart perturbs metabolism and exacerbates calcineurin-induced cardiomyopathy.

The heart adapts to changes in nutritional status and energy demands by adjusting its relative metabolism of carbohydrates and fatty acids. Loss of this metabolic flexibility such as occurs in diabetes mellitus is associated with cardiovascular disease and heart failure. To study the long-term consequences of impaired metabolic flexibility, we have generated mice that overexpress pyruvate dehyd...

متن کامل

beta(2)-adrenergic receptor overexpression exacerbates development of heart failure after aortic stenosis.

BACKGROUND Beta-adrenergic signaling is downregulated in the failing heart, and the significance of such change remains unclear. METHODS AND RESULTS To address the role of beta-adrenergic dysfunction in heart failure (HF), aortic stenosis (AS) was induced in wild-type (WT) and transgenic (TG) mice with cardiac targeted overexpression of beta(2)-adrenergic receptors (ARs), and animals were stu...

متن کامل

Selective disruption of MMP-2 gene exacerbates myocardial inflammation and dysfunction in mice with cytokine-induced cardiomyopathy.

Tumor necrosis factor-alpha (TNF-alpha) plays a pathophysiological role in the development and progression of heart failure. Matrix metalloproteinase (MMP)-2 is involved in extracellular matrix remodeling. Recent evidence suggests a protective role for this protease against tissue inflammation. Although MMP-2 is upregulated in the failing heart, little is known about its pathophysiological role...

متن کامل

Mammalian‐enabled (MENA) protein enhances oncogenic potential and cancer stem cell‐like phenotype in hepatocellular carcinoma cells

Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 305 6  شماره 

صفحات  -

تاریخ انتشار 2013